Chemically induced folding of single and bilayer graphene.

نویسندگان

  • Matthew J Allen
  • Minsheng Wang
  • Sergio A V Jannuzzi
  • Yang Yang
  • Kang L Wang
  • Richard B Kaner
چکیده

Here we report chemically induced folding of thin graphene flakes. The folding occurs spontaneously when an intercalating species interrupts the adhesion between graphene and a supporting substrate. The morphology of induced folds suggests that the conjugated pi network is capable of extremely sharp curvature. Adjacent folds are often parallel, suggesting preferential deformation along certain crystallographic planes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conduction coefficient modeling in bilayer graphene based on schottky transistors

Nowadays carbon nanoparticles are applied on the island of single electron transistor and Nano-transistors. The basis of single electron devices (SEDs) is controllable single electron transfer between small conducting islands. Based on the important points in quantum mechanics, when a wave passes through several spatial regions with different boundaries, the wave function of the first region di...

متن کامل

Twisting bilayer graphene superlattices.

Bilayer graphene is an intriguing material in that its electronic structure can be altered by changing the stacking order or the relative twist angle, yielding a new class of low-dimensional carbon system. Twisted bilayer graphene can be obtained by (i) thermal decomposition of SiC; (ii) chemical vapor deposition (CVD) on metal catalysts; (iii) folding graphene; or (iv) stacking graphene layers...

متن کامل

Nanostructuring graphene by dense electronic excitation.

The ability to manufacture tailored graphene nanostructures is a key factor to fully exploit its enormous technological potential. We have investigated nanostructures created in graphene by swift heavy ion induced folding. For our experiments, single layers of graphene exfoliated on various substrates and freestanding graphene have been irradiated and analyzed by atomic force and high resolutio...

متن کامل

Thickness-dependent reversible hydrogenation of graphene layers.

In this work, graphene layers on SiO(2)/Si substrate have been chemically decorated by radio frequency hydrogen plasma. Hydrogen coverage investigation by Raman spectroscopy and micro-X-ray photoelectron spectroscopy characterization demonstrates that the hydrogenation of single layer graphene on SiO(2)/Si substrate is much less feasible than that of bilayer and multilayer graphene. Both the hy...

متن کامل

Stacking-dependent optical conductivity of bilayer graphene.

The optical conductivities of graphene layers are strongly dependent on their stacking orders. Our first-principle calculations show that, while the optical conductivities of single-layer graphene (SLG) and bilayer graphene (BLG) with Bernal stacking are almost frequency-independent in the visible region, the optical conductivity of twisted bilayer graphene (TBG) is frequency-dependent, giving ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical communications

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2009